maybe some of this information will Help some Tom, this guy did a very good write up sir
Brake fluid is possibly the single most neglected component of the automobile. Most high performance drivers check their tire pressures and change their engine oil at frequent intervals. Virtually no one (including me) ever changes the brake fluid in their street car - or even bleeds the brakes. WRONG!
The function of brake fluid is to provide an incompressible medium to transmit the driver’s foot pressure on the brake pedal through the master cylinder(s) to the calipers in order to clamp the friction material against the discs. The foot pressure is multiplied by the mechanical pedal ratio and the hydraulic ratio of the master cylinders, booster (if used) and caliper piston(s).
This is a simple concept. When fresh, all brake fluids are virtually incompressible and the system works as well as its mechanical and hydraulic design allows. There are, however significant problems. Overheated brake fluid can (and will) boil in the caliper. Boiling produces gas bubbles within any boiling fluid. Gas is compressible so boiling brake fluid leads to a “soft” brake pedal with long travel. In extreme cases overheated brake fluid necessitates “pumping the brake pedal” in order to get a pedal at all.
Finally, Castrol SRF is a racing brake fluid that is in a class by itself with patented chemistry and is, in my opinion, the best racing brake fluid on the market today.
This leads to a discussion of boiling points. Brake fluids are classified by both “dry boiling point” and “wet boiling point”. They are also classified by US Department of Transportation (DOT) rating, DOT 3, DOT 4, DOT 5, and DOT 5.1.
As we would expect the dry boiling point is just that - the temperature at which a given brake fluid boil when it is fresh out of the can. This is the rating by which most high performance drivers and all racers select their brake fluid – from the standard racing 550 degrees Fahrenheit to the 600+ degrees Fahrenheit offered by the extreme use fluids. As a point of interest, even though they may have the same DOT rating, racing fluids are less compressible than street fluids, especially after they have been overheated.
For high performance street car use, the wet boiling point is at least as important as the dry. DOT 3 DOT 4, and DOT 5.1 brake fluids are ether based and, as such they are hygroscopic in nature - i.e. they adsorb water at every opportunity. Since water boils at 212 degrees Fahrenheit (100 degrees Celsius) the adsorbed water dramatically lowers the boiling point of the brake fluid. A minute amount of water suspended in the fluid decreases the boiling point as much as 1/3. Damn!
The fluid in the system absorbs water through the breathers, through the caliper piston seals and by magic. Not only does this reduce the boiling point, the entrained water leads to corrosion of both ferrous and Aluminum internal parts. Double Damn!! So buy your brake fluid in small containers and don’t save the leftovers.
I use Ford C6AZ-19542 which was developed in the early 1960’s to cure the problem caused by Lincoln Continental drivers boiling the fluid by habitually resting their left feet on the brake pedal. It is inexpensive and it works just fine.
But upgrading the fluid is not the whole answer. Unfortunately the hygroscopic nature of the ether based fluids means that they should be completely replaced at scheduled time based intervals (annually would be good) and that the system should be bled to replace the fluid in the calipers every time that it is overheated to the point of generating a soft pedal. Yes, the pedal will come back as soon as the fluid cools somewhat - but the boiling point is now reduced and the pedal will go mushy at a lower temperature the next time. Triple Damn!!!
Fortunately, changing to a 550 degree Fahrenheit fluid and replacing it annually will solve the problem for all but the most heavy footed among us.